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Abstract—Uncertain power sources are increasingly integrated
into distribution networks and causing more challenges for
the traditional load modeling. A variety of distributed load
components present dynamic characteristics with time-varying
parameters. Toward this end, this paper proposes a robust time-
varying parameter identification (TVPI) method for synthesis
load modeling (SLM) in distribution networks, including time-
varying ZIP, induction motor, and equivalent impedance models.
The nonlinear optimization model is developed and solved by the
nonlinear least square (NLS) to find the minimum error between
estimated outputs and measurements. To cope with TVPI deterio-
rated by voltage disturbances, dynamic programming is first used
to detect the disturbance. Then, a robust TVPI engine is designed
to constrain the estimated time-varying parameters within a
stable range. Furthermore, advanced tolerance thresholds are
also required during iterations of NLS. Numerical simulations on
the 9- and 129-bus distribution systems verify the effectiveness
and robustness of the proposed TVPI method. Also, this method
can be robust to the ambient noise of measurements.

Index Terms—Composite load modeling, distribution network,
dynamic programming, synthesis load modeling.

NOMENCLATURE

A. Acronyms:
CLM Composite load modeling.
IM Induction motor.
MAPE Mean absolute percentage error.
NLS Nonlinear least square.
PDF Probability density function.
RMSE Root mean square error.
SLM Synthesis load modeling.
TVPI Time-varying parameter identification.
B. Parameter and State Variables:
ap,t, bp,t, cp,t Percentages for ZIP active power at t.
aq,t, bq,t, cq,t Percentages for ZIP reactive power at t.
VCLM,t, VSLM,t CLM and SLM voltage magnitude at t.
V0 Nominal voltage magnitude.
PZIP,t, QZIP,t Active and reactive power of ZIP load at t.
v′d,t, v

′
q,t d- and q-axis transient voltage at t.

Rr,t, Rs,t Rotor and stator resistance at t.
Xr,t, Xs,t Rotor and stator reactance at t.
Xm,t, X

′
t Magnetizing and short circuit reactance at t.
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id,t, iq,t d- and q-axis stator current at t.
st Rotor slip at t.
Ht Inertia constant of induction motor at t.
ud,t, uq,t d- and q-axis bus voltage at t.
PIM,t, QIM,t Active and reactive power of IM load at t.
PCLM,t, QCLM,tTotal active and reactive power of CLM at t.
λp,t, λq,t Proportions of ZIP load in total active and

reactive power of CLM at t.
PSLM,t, QSLM,t Total active and reactive power of SLM at t.
Rl,t, Xl,t Resistance and reactance of equivalent

impedance at t.
Pt, Qt, Vt Measured active power, reactive power, and

voltage at t.
η1, η2 Thresholds of the basic and robust TVPI.
t, T Index of time point and its total number.
S(·), J(·) Score function and objective function.
R(·) Disturbance rule defined by users.
Am, sm, em The mth detected disturbance with its start-

time sm and end-time em.
M Total number of detected disturbances.
C. Sets, Vectors, Matrices, and Functions:
τ t, ςt, ξt Sets of CLM bus voltage, IM state, and time-

varying SLM parameter variables at time t.
εξ,t, εf ,t, εh,t Sets of process nioses at time t.
f (·) ,h (·) Generalized nonlinear function vectors of state

transition and measurement equations.
g (·) Generalized matrix model of time-varying SLM.
ςt|t−1, ξt|t−1 IM state and SLM parameter variables at time t

estimated by time t-1.
τ t−1, ςt−1,
ξt−1

Estimated CLM bus voltage, IM state, and SLM
parameter variables at time t-1.

Yt,Xt, X̃t Sets of generalized output, input, and estimation
at time t.

Xt,i Estimation at time t during the ith iteration.
ςN, ξN Mean values of IM state and SLM parameter

variables under historical normal operating con-
ditions learned by users.

I. INTRODUCTION

T IME-varying load modeling is becoming more and more
important due to the increasing integration of uncertain

power resources into distribution networks. The impacts of
time-varying load on power system stability, such as the
voltage stability, have been drawing the attention of worldwide
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researchers and engineers [1]–[3]. In North America, the
development of load modeling by the Western Electricity
Coordinating Council (WECC) has been a significant effort
in the passing years [4].

In the common transmission system, the load modeling
structures consist of static model, dynamic model, and com-
posite model. The composite load modeling (CLM) with
specific parameters has been widely used since it considers
both the static and the dynamic characteristics of the static
model and dynamic model [5], [6]. The CLM model in
the transmission system is mainly used to characterize the
dynamics of electrical load [7]. In the distribution networks,
the SLM model can estimate the load more accurately than
the conventional CLM model. This is because the SLM
model includes not only the common CLM model but also
the equivalent impedance which cannot be neglected in the
distribution network. By just considering the CLM part, the
effect of the distribution network cannot be characterized
properly [8]. Theoretically, the equivalent impedance of load
modeling cannot be ignored due to its relatively high network
losses caused by the low voltage in distribution networks.

To identify load parameters, both statistical and heuristic
techniques have been widely explored in the existing literature.
For statistical techniques, Hiskens [9] used the nonlinear least-
square based method to estimate parameters by the best fit
between measurements and model response. Zhao et al. [10]
utilized the maximum likelihood approach to estimate param-
eters for power system state dynamics. Kock et al. [11] used
the gradient method to estimate parameters of the induction
motor (IM). For heuristic techniques, neural networks [12],
[13] were used to describe the complicated dynamic behavior
of load modeling. The simulated annealing algorithm [14]
was used to find the global optimum for identifying load
parameters. However, most of these algorithms do not consider
the time-varying characteristics of load parameters. Due to the
frequent changes caused by uncertain power resources, it is
highly necessary to develop a method to estimate time-varying
parameters for load modeling in distribution networks [2].
Ignoring the time-varying characteristics of dynamic SLM can
lead to erroneous results in the transient stability studies of
distribution system operations. This is to say, the estimated
parameters at the current time point are not only related with
the current measurements (e.g., bus voltage, active power, and
reactive power) but also dependent on the previous parameters
of dynamic SLM in distribution networks.

Recently, time-varying load modeling has been focused
on by worldwide researchers [15]. For example, Wang et
al. [2] proposed a robust time-varying parameter identification
technique for CLM in a batch-model regression form. Hung et
al. [16] developed time-varying load models to determine the
photovoltaic penetration level in a distribution network. Wang
et al. [17] developed a time-varying exponential load model
to assess conservation voltage reduction effects. However, all
the aforementioned methods identify time-varying parameters
only for the combined model of ZIP and IM (CLM model)
rather than the combined model of ZIP, IM, and equivalent
impedance (SLM model). In addition, few of these methods
consider the impacts of voltage disturbances, which means

that the robustness of these methods is still undetermined for
operators. Here we define the term of “robustness” as the
accuracy and stability of estimated parameters when voltage
disturbances occur. Though measurement outliers are analyzed
in [2], it is still performed in the transmission-level system
and does not consider the equivalent impedance of SLM.
Moreover, the impacts of different measurement noises on
estimated time-varying parameters are not considered and
analyzed.

For the transmission-level system, much research has
been performed considering the specific application scenario.
Hill [18] proposed a dynamic load model that is able to
capture the usual nonlinear steady-state load behavior plus
load recovery and overshoot. Ma et al. [19] investigated the
possibility of reducing the number of composite load model
parameters to be identified from field measurements. Han et
al. [20] proposed the expectation-based composite load model
to predict unseen data and provided methods for load bus
classification and parameter identification. Choi et al. [21]
addressed the issue of multiple local optimal solutions and
the plateau problem in developing load models which are
linked to the local identifiability problem. Bai et al. [22]
combined the genetic algorithm and the nonlinear Levenberg-
Marquardt algorithm to identify parameters for the aggregate
load model. Ge et al. [23] presented a new event-oriented
method of online load modeling for a microgrid based on
synchrophasor data produced by phasor measurement units.
Kim et al. [24] proposed a computationally efficient technique
for estimating the composite load model parameters based on
analytical similarity of parameter sensitivity. Wang et al. [25]
proposed a parameter identification technique for composite
ZIP and electronic loads by leveraging the support vector
machine (SVM) approach.

For the distribution-level system, to the best of our knowl-
edge, the time-varying SLM has not been studied previously
for load modeling. Currently, the research of the existing
demand response opportunities in the distribution networks,
such as distributed energy resources, renewable energy, electric
vehicle charging, home and building energy management [26],
[27], is making load model parameters change more frequently
in the time domain, which results in more time-varying
parameters. It is imperative to understand the time-varying
characteristics of loads for distribution system analysis and
control. In addition, disturbances in measurements, such as
the transient stability events, may deteriorate estimated results
of time-varying parameters. Thus, it is highly needed to find
a way to enhance the robustness of time-varying parameter
estimation methods. To bridge the gap in the time-varying
parameter identification (TVPI) of the SLM model, we seek
to address three critical questions for distribution network
operators. Is it possible to update the existing time-varying
CLM with an equivalent impedance for distribution networks?
How can we improve the accuracy of estimated time-varying
parameters to be more stable to voltage disturbances? Can the
estimated parameters be robust to different ambient measure-
ment noises? To this end, this paper proposes a novel robust
TVPI method for SLM in distribution networks. The SLM
model can achieve better trade-off between the model accuracy
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and estimation efficiency.
To distinguish our main contributions and differences

from the existing literature, Table I compares a variety
of load models and attributes that are discussed in sev-
eral representative references. As shown in this table, most
of the conventional load modeling research focuses on the
CLM model (ZIP+IM) [5], [6], [19]–[24] and SLM model
(ZIP+IM+Equivalent Impedance) [7], [8], [28] while ne-
glecting its time-varying and robust attributes. Though these
attributes are considered in [2], [15], [25], the equivalent
impedance is still neglected due to the transmission-level
simulation. In addition, impacts of measurement noises are not
analyzed. Unlike the aforementioned literature, we for the first
time propose an SLM model considering its time-varying and
robust attributes. The main contributions of this paper include:

(i) A time-varying SLM for the TVPI of dynamic load
modeling is constituted. The time-varying voltage drop
on the equivalent impedance is decomposed into a real
component and a reactive component. The total active and
reactive power of SLM are formulated based on the active
and reactive power of CLM and equivalent impedance.
The time-varying SLM bus voltage is calculated using
the time-varying CLM bus voltage and voltage drop on
the equivalent impedance.

(ii) A method for identifying disturbances is developed. Dy-
namic programming is used to detect disturbances that
violate rules defined by users. Smaller step- and function-
tolerances are separately set for time points deteriorated
by voltage disturbances to guarantee more reliable pa-
rameter identification results.

(iii) An effective robust engine is designed to cope with
voltage disturbances and inserted into the time-varying
SLM to enhance its robustness against disturbances. A
learning-based method using mean values of time-varying
parameters under historical normal operating conditions
is formulated as an equality constraint in the developed
robust TVPI engine.

The organization of this paper is as follows. In Section II,
the time-varying SLM consisting of static load, induction
motor (IM), and equivalent impedance is briefly introduced.
Section III presents the detailed methodology of disturbance
detection and its application for designing the robust TVPI
engine. Case studies and result analysis performed on two
simulated distribution networks are discussed in Section IV.
Concluding remarks are summarized in Section VI.

II. TIME-VARYING PARAMETER IDENTIFICATION

Theoretically, load modeling is defined as a mathematical
representation of the relationship between a bus voltage mag-
nitude and the active/reactive power into the bus load [18].
Thus, it is assumed that only voltage magnitude, active power,
and reactive power can be measured by operators in this paper.

A. Time-Varying ZIP Model

One of the typical static load model is the ZIP model, which
mainly consists of three parts. The first part is the constant
impedance (Z) component. The second part is the constant
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Fig. 1. Equivalent circuit of SLM consisting of equivalent impedance, ZIP,
and IM model: an example of 9-bus distribution system.

current (I) component. The third part is the constant power
(P) component. Percentages of three components are assumed
to be time-varying due to weather conditions or customer
behaviors. The ZIP model is mathematically formulated by:

PZIP,t = ap,t (VCLM,t/V0)
2
+ bp,t (VCLM,t/V0) + cp,t, (1)

QZIP,t = aq,t (VCLM,t/V0)
2
+ bq,t (VCLM,t/V0) + cq,t, (2)

where percentage parameters satisfy ap,t+ bp,t+ cp,t = 1 and
aq,t + bq,t + cq,t = 1 at any time period t.

B. Time-Varying IM Model

The dynamic IM models are defined with a similar approach
to the synchronous machine. In this paper, the typical squirrel-
cage rotor model is used by additionally considering the
time-varying impacts of customer behaviors. The simplified
electrical circuit used for the squirrel-cage induction motor is
shown in Fig. 1. The differential algebraic equations of state
variables are formulated by:

dv′d,t
dt

=
−Rr,t

Xr,t +Xm,t

(
v′d,t +

X2
m,t

Xr,t +Xm,t
iq,t

)
+ stv

′
q,t,

(3)

dv′q,t
dt

=
−Rr,t

Xr,t +Xm,t

(
v′q,t −

X2
m,t

Xr,t +Xm,t
id,t

)
− stv′d,t,

(4)
dst
dt

=
1

2Ht

[
Tm0 (1− st)2 − v′d,tid,t − v′q,tiq,t

]
, (5)

where the d-axis stator current id,t and the q-axis stator current
iq,t are given by:

id,t =
Rs,t (ud,t − v′d,t) +X ′t (uq,t − v′q,t)

R2
s,t +X ′t

2 , (6)

iq,t =
Rs,t (uq,t − v′q,t)−X ′t (ud,t − v′d,t)

R2
s,t +X ′t

2 , (7)

where the quadratic sum of the d- and q-axis CLM bus
voltages ud,t and uq,t should be equal to the square of the
CLM bus voltage, given by:

V 2
CLM,t = u2d,t + u2q,t. (8)

The short circuit reactance X ′t is formulated by:

X ′t = Xs,t + (Xm,tXr,t)/(Xm,t +Xr,t). (9)
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TABLE I
COMPARISON OF THIS PAPER WITH EXISTING LITERATURE

References Models Attributes Operation System Impacts of Measurement Noise

ZIP IM Equivalent
Impedance Time-varying Robust

[5], [6], [19]–[24] 8 8 – – – Transmission-Level –
[7], [8] 8 8 8 – – Distribution-Level –

[15], [25] 8 – – 8 8 Transmission-Level –
[2] 8 8 – 8 8 Transmission-Level –

Research in this paper 8 8 8 8 8 Distribution-Level 8

The active and reactive power of the IM model can be
formulated by using the states, time-varying parameters, and
bus voltage variables, given by:

PIM,t =
[
Rs,t

(
u2d,t + u2q,t − ud,tv′d,t − uq,tv′q,t

)
−

X ′t (ud,tv
′
q,t − uq,tv′d,t)]/

(
R2

s,t +X ′t
2
)
,

(10)

QIM,t =
[
X ′t
(
u2d,t + u2q,t − ud,tv′d,t − uq,tv′q,t

)
−

Rs,t (ud,tv
′
q,t − uq,tv′d,t)]/

(
R2

s,t +X ′t
2
)
.

(11)

More detailed information about the time-varying ZIP and
IM models can be found in [2]. In the following section, we
will introduce more details about the proposed time-varying
SLM model. To the best of our knowledge, the time-varying
SLM has not been studied previously for load modeling in the
distribution-level system.

C. Time-Varying SLM

Based on models (1)–(2) and (10)–(11), the active and
reactive power of the time-varying composite ZIP and IM
model can be formulated by:

PCLM,t = λp,tPZIP,t + (1− λp,t)PIM,t, (12)

QCLM,t = λq,tQZIP,t + (1− λq,t)QIM,t. (13)

With the active and reactive power of CLM and equivalent
impedance, the total active and reactive power of SLM can be
formulated as:

PSLM,t=PCLM,t +Rl,t

(
P 2
CLM,t +Q2

CLM,t

)
/V 2

CLM,t,
(14)

QSLM,t=QCLM,t+Xl,t

(
P 2
CLM,t +Q2

CLM,t

)
/V 2

CLM,t.
(15)

Given that the voltage drop on the equivalent impedance
denoted as Vl, its real component ∆Vl and reactive component
δVl can be formulated as:

∆Vl,t = (PCLM,tRl,t +QCLM,tXl,t) /VCLM,t, (16)

δVl,t = (PCLM,tXl,t −QCLM,tRl,t) /VCLM,t. (17)

Thus, the SLM bus voltage is given by:

VSLM,t =

√
(VCLM,t +∆Vl,t)

2
+ (δVl,t)

2
. (18)

D. TVPI Modeling and Solving

Assuming that the set of CLM bus voltage variables τ t =
[ud,t, uq,t] and the set of IM state variables ςt = [v′d,t, v

′
q,t, st],

the set of time-varying parameter variables of SLM can be
denoted as:

ξt = [Rs,t, Xs,t, Xm,t, Rr,t, Xr,t, Ht, ap,t, bp,t,

aq,t, bq,t, λp,t, λq,t, Rl,t, Xl,t].
(19)

Normally, values of time-varying parameter variables fluc-
tuate slightly within a short time period. Thus, the relationship
between adjacent time intervals can be expressed as:

ξt = ξt−1 + εξ,t. (20)

Based on (3)–(8) and (19), discrete state transitions and
parameter transitions can be generalized as:

[ςt, ξt] = f
(
ςt−1, ξt−1, τ t−1

)
+ εf ,t. (21)

Based on (1), (2), and (9)–(18), the measurements equation
can be generalized as:

[Pt, Qt, Vt] = h (ςt, ξt, τ t) + εh,t. (22)

By integrating (20)–(22) to the matrix form, we can get:[ [
ςt|t−1, ξt|t−1

]
[Pt, Qt, Vt]

]
=

[
[ςt, ξt]

h (ςt, ξt, τ t)

]
+

[
εf ,t
εh,t

]
, (23)

where ςt|t−1 and ξt|t−1 can be approximately estimated
by (21) and given by:[

ςt|t−1, ξt|t−1

]
≈ f

(
ςt−1, ξt−1, τ t−1

)
. (24)

Finally, we can get the generalized mathematical model of
the time-varying SLM in distribution networks, given by:

Yt = g (Xt) + εt, (25)

where Xt = [ξt, ςt, τ t], Yt =
[
ςt|t−1, ξt|t−1, Pt, Qt, Vt

]
, and

εt = [εf ,t, εh,t].
Since measurement errors are not known beforehand in this

paper, the weighted least square (WLS) method is not capable
of solving the aforementioned model. Thus, the nonlinear
least square (NLS) method is used to find the minimum error
between estimated outputs and measurements. The objective
function is given by:

X̃t = arg min
Xt

[Yt − g (Xt)]
T · [Yt − g (Xt)] . (26)

To solve the nonlinear optimization problem in (26), the
NLS method with the trust-region-reflective algorithm [29]
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is chosen. This is because the developed nonlinear model
of equations is not underdetermined and bound constraints
need to be handled. The number of iterations of the devel-
oped nonlinear optimization problem depends on the solver’s
stopping criteria. For each time step t, the step-tolerance
|Xt,i−Xt,i+1| and function-tolerance |g (Xt,i)−g (Xt,i+1)|
should be smaller than the threshold η1, given by:

max
[
|Xt,i−Xt,i+1| , |g (Xt,i)−g (Xt,i+1)|

]
<η1, (27)

where i is the index of the ith iteration in the process of NLS.

III. DISTURBANCES DETECTION AND ROBUST
PROCESSING

Though time-varying parameters can be estimated by min-
imizing the objective function in (26), this aforementioned
model only considers the impacts of system noise that is added
into measurement variables and estimated in time-varying
parameter variables. However, this model is still operated
under normal stable conditions. When voltage disturbances
occur, such as the slight voltage drop/rise, it will result in
the corruption of other measurement variables (active and re-
active power) and correspondingly deteriorate estimated TVPI
results. Thus, in this section, a disturbance detection method
is first described and two estimation methods, including our
proposed robust TVPI method, are then proposed to handle
TVPI estimation with voltage disturbances based on the time-
varying model formulated in (23).

A. Dynamic Programming Based Disturbance Detection

Many methods have been used for disturbance detection,
such as the wavelet decomposition [30], empirical mode
decomposition [31], and principal components analysis [32].
However, these methods just transfer the measurements data
in the time domain to other domains (such as the frequency
domain). It is still very challenging to detect the exact start-
and end-time of one disturbance using the aforementioned
methods. To precisely insert the robust TVPI engine proposed
in the following section, it is highly needed to use dynamic
programming to obtain the exact start- and end-time of one dis-
turbance beforehand [33]. Motivated by this need, a dynamic
programming-based disturbance detection method is briefly
introduced in this section.

Dynamic programming is a method for solving a complex
problem by breaking it down into a collection of simpler
subproblems [34]. It is used to combine adjacent intervals
and detect disturbances with the maximum score function.
First, adjacent intervals with the same ramping direction are
rewarded by a score function if disturbance rules are satisfied;
otherwise, the score rewarded is zero. This score function S
is designed based on the length of intervals. Given a time
interval (i,j) of discrete time points of measurement data and
a time point k into this interval (i < k < j), the score function
presented in [35] is adopted and given by:

S(i, j) = (i− j)2 ×R(i, j), (28)

where R(i, j) represents the disturbance rules defined by users.
In this paper, the disturbance rule is defined as a proportion
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Fig. 2. An example of disturbances detected for active power.

of the maximum of one measurement variable. Taking active
power as an example, the disturbance rule is defined as:

R(i, j) =

{
1, if R(i, j) ≥ γPmax

0, if R(i, j) < γPmax
, (29)

where γ is the proportion of the maximum active power and
defined as γ=10% in this paper. Note that this proportion
coefficient γ can be adjusted based on the user’s preferences.
For a better illustration, an example of the detected disturbance
for active power is shown in Fig. 2. Then, an objective function
J is constituted according to the dynamic programming, given
by:

J(i, j) = max
i<k<j

[S(i, k) + J(k + 1, j)]. (30)

For the mth combined interval of a disturbance, i.e. Am =
(sm, em) with the start-time sm and end-time em, the objec-
tive function using dynamic programming can be recursively
expressed as:

J(sm, em)= max
sm<k1<em

S(sm, k1)+J (k1+1, em)

= max
sm<k1<em

S(sm, k1)+ max
k1+1<k2<em

S(k1+1, k2)

+· · ·+ max
ki−1+1<ki<em

S(ki−1+1, ki)+J(ki+1, em)

= max
sm<k1<k2<···<ki−1<ki<em

S(sm,k1)+S(k1+1,k2)

+· · ·+S(ki−1+1, ki)+S(ki+1, em) .
(31)

The final detected disturbances of measurement data can be
solved as:

J∗ (s1, eM ) =
∑M

m=1 S (sm, em), (32)

where M is the total number of detected disturbances in
measurement data.

For any time point that is deteriorated by voltage distur-
bances k ∈ Am, i.e., ∀k : sm < k < em, one of estimation
methods is proposed to consider higher precision of iterations.
For any time point k, the step-tolerance |Xt,i−Xt,i+1| and
function-tolerance |g (Xt,i)−g (Xt,i+1)| should be smaller
than the threshold η2.

max

[
|Xk,i −Xk,i+1|

|g (Xk,i)− g (Xk,i+1)|

]
<η1, k /∈Am

max

[
|Xk,i −Xk,i+1|

|g (Xk,i)− g (Xk,i+1)|

]
<η2, k∈Am

, (33)

where η2 is set to be significantly smaller than η1, i.e., η2 �
η1, in order to get more reliable TVPI results.
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B. Robust TVPI Engine Using Detected Disturbances

The estimated variables ςt−1 and ξt−1 at time t-1 in (24)
may be deteriorated by the detected voltage disturbance infor-
mation. Under this circumstance, the current estimated vari-
ables ςt and ξt at time t which are highly dependent on those
at time t-1 would also be compromised in turn. To avoid this,
we propose a learning-based method by inserting an equality
constraint as a robust TVPI engine. It is assumed that mean
values of time-varying parameters ςN and ξN under historical
normal operating conditions have already been learned and
known by users. From the perspective of the physical property
of SLM, estimated parameters must be stabilized into a small
range especially when voltage disturbances occur. Thus, the
proposed robust TVPI engine requests that estimated variables
are highly constrained by those under normal operating con-
ditions.

For each time point k that is located into the detected
interval of disturbance k ∈ Am, i.e., ∀k : sm < k < em,
the time-varying model in (23) and (26) can be updated as:



 ςN, ξN[
ςk|k−1, ξk|k−1

]
[Pk, Qk, Vk]

=
 [ςk, ξk]

[ςk, ξk]
h (ςk, ξk, τ k)

+
 εN,k
εf ,k
εh,k


max

[
|Xk,i −Xk,i+1|

|g (Xk,i)− g (Xk,i+1)|

]
<η1, k /∈ Am

max

[
|Xk,i −Xk,i+1|

|g (Xk,i)− g (Xk,i+1)|

]
<η2, k∈Am

.

(34)
The overall framework of the proposed robust TVPI model

for distribution networks is illustrated in Fig. 3, which mainly
consists of three major steps: optimization modeling for mea-
surements and disturbance detection, basic TVPI using NLS
under normal operating conditions, and robust TVPI engine
with smaller iteration threshold. These steps are described as
follows:
• Step 1: Based on the measurement data and time-varying

SLM model of ZIP, IM, and equivalent impedance, the
objective function of an optimization problem is developed
(see Section II). Meanwhile, disturbances are detected based
on the measurement data by using dynamic programming
(see Section III-A).

• Step 2: For each time point under normal operating con-
ditions, the basic TVPI method is developed for the time-
varying SLM in Step 1 without considering too much com-
putation of iterations when using NLS (see Section II-D).

• Step 3: For each time point with a disturbance, a robust
TVPI engine is designed and inserted into the basic TVPI
method in Step 2. More iterations are required by setting
advanced tolerances to obtain robust TVPI results (see
Section III-B).

IV. CASE STUDIES

To evaluate the performance of the proposed robust method-
ology, two case studies are simulated on the 9- (see Fig. 1a)
and 129-bus (see Fig. 4) distribution networks, respectively.
There are 4 IM-load and 2 ZIP-load in the 9-bus system,
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Fig. 4. Topology of the 129-bus distribution system.

and 64 IM-load and 32 ZIP-load in the 129-bus system.
Note that a positive-sequence component is assumed and
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Fig. 5. Measurement data of active power, reactive power, and voltage in the
129-bus system.

modeled for both 9- and 129-bus distribution systems in this
paper. The negative-sequence and zero-sequence components
are not considered in the current simulation platform. For
both distribution systems, we testify the effectiveness of the
proposed method by comparing with two other methods:

• Method 1: basic TVPI using the model in (23) and con-
strained by (27).

• Method 2: TVPI considering disturbances using the model
in (23) and constraints in (33).

• Method 3 (proposed): robust TVPI considering distur-
bances using the model and constraints in (34).

In the 9-bus distribution system, the SLM is compared with
CLM to verify its effectiveness. In the 129-bus distribution sys-
tem, the robustness of the proposed method is analyzed with
different measurement noises. To mimic the real measurements
with time-varying load changes, the simulated active power,
reactive power, and voltage are added by a Gaussian noise
with zero mean and a standard deviation as one thousandth
of the corresponding value. The NLS solver lsqnonlin in
MATLAB [29] is used to solve the aforementioned methods.
Thresholds η1 and η2 of the stopping tolerance are set as
10−3 and 10−5, respectively. For both distribution systems,
a disturbance of voltage drop on the bus (Bus 1) connected
with the main grid is set at 1 second. Measurement data of
active power, reactive power, and voltage are assumed to be
monitored and gathered at Bus 1 for both 9- and 129-bus
systems. The bus voltage drops from 1 p.u. to 0.9 p.u. For
the simplicity of illustration, the measurement data of active
power, reactive power, and voltage in the 129-bus system is
shown in Fig. 5.

To compare the robustness of different TVPI methods, three
basic assumptions are made in this section:

(i) Historical mean values ςN and ξN of TVPI under normal
operating conditions are assumed as the targeted bench-
mark values, which have been learned already and known
by users in advance.

(ii) Estimated parameters are with less fluctuations under
voltage disturbances. This assumption aims to guarantee
the stability of TVPI values.

(iii) Estimated parameters are with smaller deviation from the
historical mean value under normal operating conditions.
This assumption aims to guarantee the accuracy of TVPI
values.

Numerical metrics are used to evaluate the performance
of different methods based on the estimated time-varying
parameters. By comparing with mean values ξN of actual
time-varying parameters under historical normal operating
conditions, mean absolute percentage error (MAPE) and root
mean square error (RMSE) metrics are formulated as:

MAPE =
1

T

∑T
t=1 |(ξt − ξN) /ξt|, (35)

RMSE =

√
1

T

∑T
t=1 (ξt − ξN)

2
. (36)

A. 9-Bus Distribution Network

1) Effectiveness Analysis of Estimated Parameters: Fig. 6
shows six representative parameters: Rs,t, Xs,t, Xr,t, ap,t,
bp,t, and aq,t, which are estimated by three methods. For
the simplicity of comparison, the mean values of parameters
under historical normal operating conditions (the blue solid
line) are used as the benchmark. We define the robustness as
not only the accuracy of estimated parameters but also the
stability when voltage disturbances occur. As can be seen, the
performance of Method 1 (the blue dash line) and Method
2 (the green dash line) is not stable and accurate compared
with the benchmark mean value. A significant variation can
be seen when using Method 1 and Method 2 which is caused
by the voltage drop at 1 s. This is because both Method 1 and
Method 2 only use the basic TVPI model where the current
TVPI is highly dependent on that at the previous time point.
Correspondingly, the estimation results are significantly misled
by voltage disturbances. For most parameter curves, Method
1 shows the worst performance with the largest variation
and the farthest distance to the blue solid line. By using the
advanced tolerance threshold when disturbances occur, dash
green parameter curves using Method 2 move closer to the
blue solid line. However, there are still some time points with
the most inaccurate results, such as parts of curves in Figs. 6a,
6d, and 6f (marked by black dash circles).

The red solid curves using the proposed Method 3 show
the best performance compared with Method 1 and Method
2 with the closest distance to the blue solid line. Especially
when disturbances occur at 1 second, Method 3 shows the
most stable results with a slightest variation. This is because
Method 3 uses the proposed robust TVPI engine which makes
variables highly constrained by the normal operating TVPI.

To quantitatively evaluate the performance of Method 3, Ta-
ble II illustrates the metrics of time-varying parameters using
estimation methods, including MAPE, RMSE, and standard
deviation. Method 3 shows the smallest metrics of parameters
compared with Method 1 and Method 2. Theoretically, smaller
MAPE and RMSE mean that using Method 3 can obtain more
accurate results, while smaller standard deviations mean that
using Method 3 can obtain more stable results with the least
effects of voltage disturbances. These numerical results can
obtain the same conclusion as in Fig. 6.

2) Effectiveness Analysis of Estimated Measurements:
Fig. 7 shows the probability density function (PDF) of esti-
mation errors of active and reactive power using time-varying
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Fig. 6. Six representative parameters estimated in the 9-bus system.
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Fig. 7. Errors of estimated active and reactive power in the 9-bus system.

parameters identified by different methods. As can be seen,
Method 3 shows the smallest range (-0.003∼0.003) of estima-
tion errors for both active and reactive power. Method 1 and
Method 2 estimate the relatively larger ranges of errors with
-0.01∼0.01 and -0.005∼0.005, respectively. This observation
of estimated measurements can also validate the accuracy and
effectiveness of the proposed robust TVPI method.

3) Comparison of SLM and CLM: Fig. 8 compares the
measured and estimated active power using three methods and
SLM/CLM models. As can be seen, the active power profile
using any method on SLM shows a better fit of measured
active power than that using CLM. When using Method 3
on CLM, there is a largest difference between measured
and estimated active power. This is mainly caused by the
equivalent impedance which makes the dynamics of equivalent
IM model differ from that of the actual IM in distribution
networks. The difference of active power in Fig. 8 is mainly
consumed on the resistance of the equivalent impedance.

B. 129-Bus Distribution Network

This section shows the results on the 129-bus distribution
network in which 128 buses are directly or indirectly con-
nected to the main grid through Bus 1. In this system, there
are totally 64 IM-load and 32 ZIP-load. The disturbance of
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Fig. 8. Comparison of measured and estimated active power using three
methods and SLM/CLM models in the 9-bus system.

voltage drop and the noise of measurement data are set the
same as in the 9-bus system.

1) Effectiveness Analysis of the Proposed Method: Fig. 9
illustrates six representative parameters: Rs,t, Xs,t, Xr,t, bp,t,
bq,t, and λp,t, which are estimated by three methods. Com-
pared with Method 1 and Method 2, it is shown that Method 3
estimates the most accurate and robust results with the closest
distance to the mean value line in blue for all time-varying
parameters. Even for time points with disturbances after 1 s,
it can also provide estimation results with the least influence
of voltage disturbances.

Another interesting finding in Figs. 9b and 9c is that
the parameter curves using Method 2 (the green dash line)
significantly diverge from the blue mean value line when the
voltage disturbance occurs. Under this circumstance, Method
2 performs worse than both Method 1 and Method 3. The main
reason is that Method 2 does not consider the proposed robust
TVPI engine. Though the advanced tolerance threshold is used
in Method 2, the estimated results are still very sensitive to
the voltage disturbance. Once one time point is deteriorated
by the disturbance, its following time points will also be
significantly misled one by one. To quantitatively evaluate
the performance of Method 3, Table III shows the metrics
of time-varying parameters using different methods. It can be
found that Method 3 shows the smallest metrics compared with
Method 1 and Method 2. We can get the same conclusion as
in Table II that Method 3 can estimate not only more accurate
results with smaller MAPE and RMSE but also more stable
results with smaller standard deviation.

2) Robustness Analysis to Different Measurement Noises:
To further validate the robustness of the developed method,
Fig. 10 analyzes the impact of different measurement noises
on estimated time-varying parameters by taking the stator
resistance Rs,t as an example. Metrics of standard deviation in
Fig. 10a and MAPE in Fig. 10b are used for comparison. The
measurement noise is increased from 0.4×10−3 to 4.8×10−3.

In Fig. 10a, Method 3 provides the smallest standard devia-
tion in the range of 0.8∼1.1 for the estimated parameter Rs,t

under all measurement noises. It indicates that the proposed
Method 3 can estimate the most stable results compared with
Method 1 and Method 2. In Fig. 10b, Method 3 provides the
smallest MAPE in the range of 2%∼3% for the estimated
parameter Rs,t under all measurement noises. It indicates that
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TABLE II
METRICS OF ESTIMATION METHODS IN THE 9-BUS DISTRIBUTION SYSTEM

Parameters MAPE [%] RMSE [%] Standard Deviation
Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Rs,t 4.71 5.60 1.88 2.17 2.43 0.94 1.92 2.01 0.88
Xs,t 1.87 1.79 1.59 1.16 0.67 0.62 1.16 0.67 0.61
Xm,t 8.09 3.34 2.21 2.45 0.96 0.14 1.85 0.74 0.13
Rr,t 2.31 2.32 0.51 1.04 1.05 0.28 1.65 1.68 0.76
Xr,t 3.05 2.41 1.95 1.35 0.59 0.47 1.35 0.59 0.46
Ht 1.13 1.14 0.27 8.87 8.89 2.39 1.21 1.22 0.33
ap,t 2.37 3.29 1.02 3.30 2.99 1.09 3.22 2.41 1.06
bp,t 1.65 1.22 0.34 1.92 1.16 0.38 1.78 0.96 0.36
aq,t 4.73 5.51 2.41 5.76 6.19 2.93 5.21 5.37 2.75
bq,t 10.12 8.40 2.18 4.74 3.75 1.18 4.37 3.20 1.09
λp,t 0.36 0.37 0.24 0.82 0.51 0.36 0.81 0.43 0.34
λq,t 2.23 1.28 0.89 3.95 2.69 1.51 3.87 2.69 1.44
Rl,t 16.97 16.09 9.74 6.99 6.42 4.19 6.49 5.93 3.99
Xl,t 4.06 4.09 3.27 3.39 3.44 2.86 3.17 3.32 2.73

TABLE III
METRICS OF ESTIMATION METHODS IN 129-BUS DISTRIBUTION SYSTEM

Parameters MAPE [%] RMSE [%] Standard Deviation
Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Rs,t 10.91 11.70 1.96 3.87 4.03 0.98 2.38 2.15 0.92
Xs,t 2.46 18.75 1.31 0.56 3.46 0.25 0.51 2.81 0.23
Xm,t 2.81 1.79 0.48 1.07 0.67 0.26 1.06 0.51 0.24
Rr,t 4.38 4.37 1.41 2.08 2.09 0.81 4.86 4.88 2.78
Xr,t 5.78 23.33 1.64 0.91 3.55 0.25 0.77 2.88 0.23
Ht 1.99 2.02 0.51 1.44 1.45 0.36 2.78 2.75 1.56
ap,t 1.04 6.35 0.66 0.78 4.66 0.41 0.78 4.32 0.41
bp,t 1.48 3.91 0.19 1.54 4.61 0.26 1.53 3.62 0.23
aq,t 4.63 7.32 2.01 4.11 6.32 2.05 3.97 5.89 1.95
bq,t 6.25 6.93 1.62 4.42 4.81 1.32 4.03 3.77 1.24
λp,t 0.13 0.24 0.09 0.27 0.33 0.12 0.27 0.32 0.12
λq,t 1.88 4.55 1.83 2.61 5.93 2.06 2.49 5.31 1.85
Rl,t 5.63 11.12 5.11 3.14 4.87 2.41 3.14 4.71 2.31
Xl,t 2.94 4.34 1.81 2.86 4.35 2.01 2.62 3.94 1.91
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Fig. 9. Six representative parameters estimated in the 129-bus system.

the proposed Method 3 can estimate the most accurate results.
Overall, the TVPI results obtained by Method 3 are relatively
robust to different measurement noises.

In addition, Method 2 can provide more stable results than
Method 1 with smaller standard deviation as shown in Fig. 10a.
However, it cannot provide more accurate results than Method
1 as shown in Fig. 10b where MAPEs of Method 2 are larger
than those of Method 1. This indicates that, by just tuning
the advanced tolerance thresholds, it is still challenging for
Method 2 to obtain robust results. It is the developed robust
TVPI engine considered in Method 3 that can significantly
improve the robustness of TVPI methods.

3) Computational Time Analysis: Due to the design of
a robust TVPI engine with a significantly smaller threshold
η2 for the step- and function-tolerance, more iterations are
required and take longer computational time. However, the
advantage of the proposed Method 3 is a trade-off between
the computational time and the estimation accuracy. Table IV
illustrates the numerical results of computational time and
the RMSE metric of estimated parameter Xm,t. Method 1
is taken as the benchmark. As shown in this table, though
the computation time is slightly increased by using Method
2 and Method 3, the RMSE metric of parameter Xm,t is
significantly reduced. For Method 2, the 11% increment of
computational time can reduce RMSE by 37%. For Method
3, the 17% increment of computational time can significantly
reduce RMSE by 76%. This finding can validate the benefits
of the computational time increment for the proposed method.
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Fig. 10. Impacts of measurement noises on estimated parameter Rs,t in the
129-bus system.

TABLE IV
COMPARISON OF COMPUTATIONAL TIME AND RMSE METRIC OF

ESTIMATED PARAMETER Xm,t

Metrics Method 1 Method 2 Method 3
RMSE [%] 1.07 0.67 0.26

Computational Time [s] 1.52 1.68 1.79
RMSE Decrement [%] \ 37 76
Computational Time

Increment [%] \ 11 18

TABLE V
COMPARISON WITH/WITHOUT TIME-VARYING CHARACTERISTICS OF

DYNAMIC SLM USING RMSE METRIC

Systems Measurements W/O [%] With [%]

9-bus
Active Power 1.54 0.28

Reactive Power 2.15 0.76
Voltage 1.13 0.34

129-bus
Active Power 4.62 1.81

Reactive Power 2.38 0.92
Voltage 1.44 0.81

C. Impacts of Time-Varying Characteristics of Dynamic SLM

The estimated time-varying parameters in Figs. 6 and 9 in
the 9- and 129-bus systems are used to compare with time-
invariant parameters (i.e., constant values). Table V shows
the comparison results with/without considering time-varying
characteristics of dynamic SLM. The RMSE metrics of mea-
surements (active/reactive power and voltage) are used for
numerical comparison. As shown in this table, by consid-
ering the time-varying characteristics of dynamic SLM, the
RMSE metrics of measurements for both simulation systems
are reduced to smaller values, which means more accurate
measurements can be obtained. However, when time-varying
characteristics of dynamic SLM are not considered, the RMSE
metrics of measurements for both simulation systems are
relatively large. This observation can prove that time-varying
characteristics of dynamic SLM should not be ignored for the
study of load modeling.
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Fig. 11. Estimated parameter Rs,t in both 9- and 129-bus systems with a
voltage increase from 1.0 p.u. to 1.1 p.u. at Bus 1.

D. Effectiveness Analysis with Voltage Increase

To further validate the effectiveness of the developed
method, a bus voltage increases from 1.0 p.u. to 1.1 p.u. at
Bus 1 in both 9- and 129-bus systems. The voltage increase is
set at 1 second. Fig. 11 shows the estimated parameter Rs,t as
a representative in both 9- and 129-bus systems. As shown in
this figure, the performance of Method 1 (the blue dash line)
and Method 2 (the green dash line) is not stable and robust
compared with the benchmark mean value (the blue solid line).
A significant upward variation caused by the voltage increase
can be seen when using Method 1 and Method 2. This is
because both Method 1 and Method 2 only use the basic
TVPI model where the current TVPI is highly dependent on
that at the latest time point. Method 3 in the red solid curve
shows the best performance compared with Method 1 and
Method 2 with the closest distance to the blue solid line (the
benchmark). Especially when the voltage increase occurs at 1
second, Method 3 shows the most stable results with a slightest
change. This observation can validate the effectiveness of the
developed method for coping with a voltage increase.

E. Effectiveness Analysis with Voltage Fall and Recovery

To show the effectiveness and adaptability of the developed
method, a form of voltage disturbances with a voltage fall
at 1.0 s and a voltage recovery at 1.05 s is simulated on the
same structure and parameters of both 9- and 129-bus systems.
Fig. 12 shows results of the estimated parameter Rs,t as a
representative in both systems. As can be seen in this figure,
the performance of Method 1 (the blue dash line) and Method
2 (the green dash line) is not stable and robust compared with
the benchmark mean value (the blue solid line). A significant
downward fluctuation caused by the voltage fall at time 1.0
s, and a significant upward fluctuation caused by the voltage
recovery at time 1.05 s can be seen when using Method 1 and
Method 2. Method 3 shows the most accurate and stable results
of parameter Rs,t for both systems with the closest distance
to the benchmark blue line. Especially when the voltage fall
occurs at 1.0 s and the voltage recovers at 1.05 s, Method
3 shows the most stable results with the slightest changes.
This finding can validate the effectiveness and adaptability of
the developed method for coping with both voltage fall and
recovery.
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Fig. 12. Estimated parameter Rs,t in both 9- and 129-bus systems with a
voltage fall at 1.0 s and a voltage recovery at 1.05 s.

TABLE VI
COMPARISON WITH TIME-VARYING ERM AND SLM MODEL USING

RMSE METRIC

Systems Measurements With ERM [%] With SLM [%]

9-bus
Active Power 0.78 0.28

Reactive Power 1.34 0.76
Voltage 0.85 0.34

129-bus
Active Power 2.21 1.81

Reactive Power 1.22 0.92
Voltage 1.18 0.81

F. Effectiveness Comparison With Exponential Recovery
Model

To further validate the effectiveness of the developed
method using the SLM model, the exponential recovery model
(ERM) in [18] is used for comparison. Table VI shows the
comparison results based on the time-varying ERM and SLM
models. The RMSE metrics of measurements (active/reactive
power and voltage) are used for numerical comparison. As
shown in this table, when using the SLM model, the RMSE
metrics of measurements for both simulation systems are
slightly reduced with smaller values. This indicates that more
accurate measurements can be estimated using the SLM
model compared with the ERM model. This is because the
exponential recovery model cannot represent different load
compositions, while the SLM load model can adaptively
change the time-varying percentage parameters of the Z, I,
and P compositions.

V. DISCUSSION

With the recent increasing development and installation
of distribution-level PMU and wave measurement devices in
distribution systems, the measurement data of active power,
reactive power, and voltage can be sampled in a considerably
precise reporting rate, that is, 30–120 samples per second.
PMU measurements make it completely possible to estimate
time-varying load parameters in a small transient time interval.

To apply the estimated time-varying parameters in the small
transient time interval, Fig. 13 compares the flowchart of
the proposed time-varying load model with the conventional
time-invariant load model. For the conventional load model,
load parameters are estimated as constant values by using
least square methods during the whole transient time inter-
val. Since the parameters cannot be adaptively time-varying,
the estimated measurements of active power and reactive
power are less accurate. For the time-varying load model,

Conventional Load 
Model

Voltage Vt

Voltage Vt-1

Voltage Vt-i

Active Power Pt

Reactive Power Qt

Active Power Pt-1

Reactive Power Qt-1

Active Power Pt-i

Reactive Power Qt-i

Time-Invariant Load 
Parameters LESS ACCURATE 

ESTIMATED 
MEASUREMENTS

(a) Flowchart of conventional time-invariant load model

Time-Varying Load 
Model

Voltage Vt

Active Power Pt

Reactive Power Qt

Active Power Pt-1

Reactive Power Qt-1

Active Power Pt-i

Reactive Power Qt-i

Time-Varying Load 
Parameters 

Voltage Vt-1

Time-Varying Load 
Parameters 

Voltage Vt-i

Time-Varying Load 
Parameters 

MORE ACCURATE 
ESTIMATED 

MEASUREMENTS

(b) Flowchart of proposed time-varying load model

Fig. 13. Comparison of the application of the proposed time-varying load
model with the conventional time-invariant load model.

load parameters are adaptively estimated at each time step
during the transient time interval. Consequently, the estimated
measurements of active power and reactive power are more
accurate compared with those using the conventional time-
invariant load model.

VI. CONCLUSION

In this paper, we propose a robust time-varying parameter
identification (TVPI) method in distribution networks consid-
ering voltage disturbances. The time-varying synthesis load
modeling (SLM) is used with the combination of dynamic
equivalent impedance, ZIP, and induction motor load. Dynamic
programming is used to detect disturbances from measurement
data. To cope with TVPI under voltage disturbances, a robust
TVPI engine is designed and inserted into the mathematical
model of time-varying SLM. The nonlinear least square (NLS)
method with the trust-region-reflective algorithm is used to
solve the nonlinear optimization problem. In addition, ad-
vanced tolerance thresholds are also required during iterations
of NLS. Numerical simulations and comparisons of three TVPI
methods show that:

(i) The proposed TVPI method can estimate more accurate
and stable results of time-varying parameters with the
smallest MAPE, RMSE, and standard deviations under
voltage disturbances.

(ii) The estimation profile of measurement variables using
SLM shows a better fit of measurement data than that
using CLM. The time-varying SLM can model the dy-
namic load more accurately.
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(iii) The proposed TVPI method is robust to different mea-
surement noises with relatively smaller standard devia-
tions and MAPEs of estimated parameters.

In future work, this research can be further improved by:
(i) considering the three-phase unbalanced fault as a type
of disturbances to further validate the effectiveness of the
proposed robust time-varying parameter identification method;
and (ii) analyzing the cause of parameter changes in Fig. 6 and
Fig. 9, which are different from each other.
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